LangChain1.0搭建Agent智能体应用实战
1、Agent核心概念与技术架构
Agent智能体是一种以大语言模型(LLM)为”大脑”,能够自主感知环境、进行推理规划,并调用外部工具执行复杂任务的系统。它不仅仅是简单的程序,而是具备一系列高级特征的复杂系统。根据LangChain框架的定义,Agent的核心是以大语言模型(LLM)作为其推理引擎,并依据LLM的推理结果来决定如何与外部工具进行交互以及采取何种具体行动。这种架构将LLM的强大语言理解与生成能力,与外部工具的实际执行能力相结合,从而突破了单一LLM的知识限制和功能边界。Agent的本质可以被理解为一种高级的提示工程(Prompt Engineering)应用范式,开发者通过精心设计的提示词模板,引导LLM模仿人类的思考与执行方式,使其能够自主地分解任务、选择工具、调用工具并整合结果,最终完成复杂的任务。
Agent(智能体)已超越传统AI模型,成为能够自主完成多步骤复杂任务的智能数字助手。其核心特征在于自主性增强、执行能力和持续学习。
![image-20260131123831234]()
LangChain1.0框架基础入门实战
LangChain使用之Retrieval
1、Retrieval模块的设计意义
- Retrieval直接翻译过来即“检索”,本章Retrieval模块包括与检索步骤相关的所有内容,例如数据的获 取、切分、向量化、向量存储、向量检索等模块。常被应用于构建一个“企业/私人的知识库”,提升大 模型的整体能力。
1.1 大模型的幻觉问题
- 拥有记忆后,确实扩展了AI工程的应用场景。
- 但是在专有领域,LLM无法学习到所有的专业知识细节,因此在
面向专业领域知识的提问时,无法给出可靠准确的回答,甚至会“胡言乱语”,这种现象称之为LLM的“幻觉”。 - 大模型生成内容的不可控,尤其是在金融和医疗领域等领域,一次金额评估的错误,一次医疗诊断的失误,哪怕只出现一次都是致命的。但,对于非专业人士来说可能难以辨识。目前还没有能够百分之百解决这种情况的方案。
- 当前大家普遍达成共识的一个方案:
- 首先,为大模型提供一定的上下文信息,让其输出会变得更稳定。
- 其次,利用本章的RAG,将检索出来的
文档和提示词输送给大模型,生成更可靠的答案。



